

INDIAN INSTITUTE OF PETROLEUM AND ENERGY

2nd Floor, Main Building, A.U. College of Engineering (A), Andhra University, Visakhapatnam-530 003.

B.TECH FOURTH YEAR SYLLABUS PETROLEUM ENGINEERING

Sl. No.	Course Name	L	Т	Р	Credits
1	Process Safety	1	0	0	1
2	Reservoir Simulation	3	1	0	4
3	Elective II	3	0	0	3
4	Data Analytics and AI for Process Industry	3	0	0	3
5	Project Engineering and Management	3	0	0	3
6	Production Engineering Lab	0	0	3	2
7	Industrial Training	0	0	0	2
8	Project I	0	0	6	4
	Total	13	1	9	22

7th SEMESTER

8th SEMESTER

Sl. No.	Course Name	L	Т	Р	Credits
1	Elective III	3	0	0	3
2	Elective IV	3	0	0	3
3	Elective V	3	0	0	3
4	Reservoir Simulation Lab	0	0	3	2
5	Project II	0	0	9	6
6	Comprehensive Viva-Voce	0	0	0	2
	Total	9	0	12	19

7th SEMESTER

Course Type	Course Code	Name of Course	L	L T P		Credit				
Core	BS40003	Process Safety	1	0	0	1				
Course Objective										
2. To ta 3. Prev 4. Miti	 Prevent the accident. Mitigate the consequences should an accident occur. 									
1. Und 2. Fore	 Forewarn their subordinates and inform their seniors about unsafe situations. 									
Unit No.	Topics to be Covered Learning Outcome									
	Safety in chemical industry; Setting & layout of chemical plant. Forms of hazards: chemical, toxic, explosion, electrical, mechanical, radiation, noise hazards. Control and prevention of hazards.Understand basic terminologies of process safety.Will be able to read and appreciate documents related to process safety.Of hazards.									
	Asphyxiation, respiratory and skin effect of petroleum hydrocarbons, sour gases. Thresh- hold limits.Will understand the ent metabolism and effect toxicants in the body.Analysis of documented accidents: emission from Leaks, free jets, Pool formation andWill understand specific toxical effects from case studies.					effect of dy. becific toxicant tudies. source and				
	Characteristics of chemical with special Will appreciate risks and hazar					storage and able materials.				

4. Risk Analysis: hazard and o (HAZOP) studies. Hazard analysis (H fault tree analysis, consequence scenario and probabilistic assessment. Safety audit: objective, procedure, en standards, Factories Act and Ro regulating agencies. Safety and Environmental Mat Systems, SEMS	(HAZAN), analysis, t. ngineering		sment be fan		e witl		risk safety
---	---	--	-----------------	--	--------	--	----------------

1. Crowl, D.A., Louvar, J. F., "Chemical Process Safety – Fundamentals with Applications". Prentice-Hall, Pearson, 2011.

Reference:

1. CCPS," Guidelines for Engineering Design for Process Safety", AIChE

Course Type	Course Code	Name of Course			Т	Р	Cred it		
Core	PE40001	Reservoir Simul	lation	3	1	0	4		
Course Obj	Course Objective								
equat soluti	1. The purpose of this course is to introduce the fundamental principles and mathematical equations governing fluid flow in reservoir, and formulation of numerical models and solution techniques behind reservoir simulation in order to predict flow of fluids (typically oil, water and gas).								
Learning O	utcomes								
 Under multij Use fi inject Predic 	 At the end of this course, students will be able to: 1. Understand basic concepts and partial differential equations for single phase and multiphase flow of fluid in reservoir. 2. Use finite difference formulations for numerical predictions of fluid flow behaviour during injection or production conduct the calibrations of a reservoir simulation model. 3. Predict and optimize future performance of petroleum reservoirs using reservoir simulation. 								
Unit No.	Topics	to be Covered	Lea	arning Outcome					
1.	Introduction to re	eservoir simulation.	Concepts simulation.	of	mode	elling	and		
2.	Introduction to modeling.	integrated reservoir	Use of geoph physical and data with go create reserve	engin eostati	eering istical	meth	-		
3.	Basic Equations	for single phase flow.	create reservoir description.Continuity equation in various flgeometries, Derivation of Generaliflow equations, Different form of flequations, initial and boundconditions.		ralized				
4.	Finite Difference flow equations.	• Approximation to linear	Method of Approximation derivatives, I and boundary implicit representation and sink automatic simulation reservoir.	on of mpler cond form n, tre terms time	spati nentat itions, ulation atmen	al and ion of , Explins, at of ream p c	initial icit and well		

5	Solution techniques of single phase flow	Linearization techniques;
	equations.	incompressible, slightly compressible
		and compressible flow problems; Use
		of Balance Calculation in Reservoir
		Simulation.
6	Multiphase flow simulation.	Concept of Black oil and
		compositional models; Conservation
		equations in a multiphase flow
		system; Flow equations; Finite
		difference approximation;
		Simultaneous Solution method,
		Implicit Pressure Explicit Saturation
		method, Sequential Solution method.
		Multiphase flow in two and three
		dimensions.
7	History matching.	Inverse modeling, parameterization,
		objective function formation,
		calibration and tuning algorithm,
		Bayesian formulation and uncertainty
		quantification, optimization
		algorithms.

- 1. K. Aziz, A. Settari, Petroleum Reservoir Simulation. Applied Science Publisher (2006).
- 2. Turgay Ertekin, J.H. Abou-Kassem, and G.R. King, Basic Applied Reservoir Simulation. Society of Petroleum Engineers (2001).

Reference

- 1. Chen, Zhangxin. Reservoir simulation: mathematical techniques in oil recovery. Society for Industrial and Applied Mathematics (2007)
- 2. Shahab D. Mohaghegh, Data-Driven Reservoir Modeling. Society of Petroleum Engineers (2017).
- 3. James R. Gilman and Chet Ozgen, Reservoir Simulation: History Matching and Forecasting. Society of Petroleum Engineers (2013).

Course Type	Course Code	Name of Course	L	Т	Р	Credit
	BS40002	Data Analytics and AI for Process Industry	3	0	0	3
Course Obje	ective					

- 1. To introduce students to basic applications, concepts, and techniques of data mining.
- 2. To understand various key paradigms for machine learning approaches.
- 3. To understand and differentiate among various machine learning techniques.

Learning Outcomes

Student will be able to:

- 1. Understand the need for data analysis, basic techniques used in data mining and machine learning.
- 2. Design a data mart or data warehouse for any organization and extract knowledge using data mining techniques.
- 3. Design and implement machine learning solutions to classification, regression, and clustering problems; and be able to evaluate and interpret the results of various machine learning algorithms.
- 4. Understand the importance of big data analytics, a Big Data Platform and its uses.

Unit No.	Topics to be Covered	Learning Outcome
1.	Introduction: Introduction to Data Analytics and Artificial Intelligence-Some illustrations of AI problems-Data-Information- Knowledge-Applications of Data Analytics- Introduction to the Languages of Data Science: R, SQL, and Python.	Student will understand the need for this course and also learn the basics (SQL, Python libraries) needed for the rest of the course.
2.	Data warehousing: Introduction to Data warehousing, Concepts of Data warehousing- OLAP-Data Preparation and Visualization.	Students will understand a data mart or a data warehouse and extract knowledge from them using data mining techniques.
3.	Descriptive Statistics: Central Tendency and Variability, Inferential Statistics-Probability- Central Limit Theorem-Exploratory Data Analysis-Hypothesis Testing.	Student will learn to calculate and interpret the various measures of central tendency, dispersion skewness. Analyze and compare different sets of data. Making an inference about a population from a sample.

4.	Linear Regression,	Design and implement machine
	Classification and Clustering Techniques:	learning solutions to
	KNN, Naïve Bayes and Logistic Regression-	classification, regression, and
	K-means and Hierarchical Clustering-	clustering problems; and be able
	Decision Trees-Support Vector Machines-	to evaluate and interpret the
	Neural Networks-Association Rule Mining.	results of various machine
		learning algorithms.
5.	Introduction to Big Data and Hadoop:	Understand the importance of big
	Managing Big Data-Hadoop Ecosystem Tools	data analytics, a Big Data
	(Sqoop and Hive). Introduction to Spark;	Platform and its uses.
	Big Data Analysis using SparkR, SparkSQL;	Understand the Vector, Raster,
	Case Studies; Spatial Data Model;	and Image models. Multilayer
	Visualization and Query of Spatial Data;	representation, Queries based on
	Subsurface Mapping and Correlation and	geometry.
	applications.	

- 1. Thomas A. Runkler, Data Analytics: Models and Algorithms for Intelligent Data Analysis, Springer, 2012.
- 2. Data Mining: Concepts and Techniques (The Data Mining: Concepts and Techniques (The Morgan Kaufmann Series in Data Management Systems) by Jiawei Han (Author), Micheline Kamber (Author), Jian Pei.
- 3. Big Data and Hadoop by V. K. Jain.

References:

- 1. Wes McKinney, Python for Data Analysis, O' Relley, 2013.
- 2. Keith R. Holdaway, Harness Oil and Gas Big Data with Analytics: Optimize exploration and Production with Data Driven Models, Weily, 2014.
- 3. Robert Haining, Spatial Data Analysis, Theory and Practice, Cambridge University Press, 2003.

Course Type	Course Code	Name of Course	L	Т	Р	Credit
	CH 40001	Project Engineering and 3 0 Management		0	0	3
Unit No.		Topics to be Covered		Ι	learni	ing Outcome
1.	Planning, An Generation and Feasibility studi various compon Elements of C Financing of Depreciation con capital estimat analysis, ROI, Project Manag Technique for p Project Risk As	ct Implementation; Project Miles alysis, Selection, Implementa Screening of project ideas. es. Project Analysis and introducti ent of Project cost and their estima oat of Project, Cost of Produc projects: Debt-Equity ratio ncept, Capital cost estimation, Wo fon, Project Evaluation, break- IRR, Discounted cash flow ana gement and Scheduling, Net project management: CPM and Pl sessment, Social Cost benefit ana and Private Equity.	on to ation; ction; etc rking even lysis. work ERT,			

- 1. Projects: Planning, Analysis, Selection, Financing, Implementation, and Review by P. Chandra.
- 2. Plant Design and Economics for Chemical Engineers by M. S. Peters and K. D. Timmerhaus.
- 3. Project Engineering of Process Plants by H.F. Rase.

Course Type		Course Code	Name of Cou	rse	L	Т	Р	Credit		
La	ıb	PE 40002	Production Enginee	ering Lab	0	0	3	2		
Course	Course Objective									
1. T	1. The objective of this lab course is to provide hands on practice on the surface production									
oj	operation related to processing of properties of produced fluid (oil, brine and gas) and to									
si	mulate th	neir flow through	n pipeline and separa	tors. This	course	also ai	m to cha	aracterize the		
fl	fluid properties of synthesized EOR fluids and simulate their behavior through core flooding									
	xperimen	-					0	U		
	ng Outco									
Learm	ig Outo	mes								
Upon su	iccessful	completion of the	his course, students	should be	able to	:				
1. A	nalyze th	e physical prop	erties of produced cr	ude oil, b	rine, ga	lS.				
2. Si	imulate t	he two phase flo	w process through p	ipeline.						
3. C	haracteri	ze EOR fluids fo	or their wettability, c	ontact an	gle, sur	face ter	ision an	d interfacial		
te	nsion.				-					
4. Si	imulate A	Additional Oil re	covery process using	g polymer	:/ surfac	ctant flu	ids.			
Unit		Topics to be		Learning Outcome						
No.		ropies to se			, ouro	,				
1	Determ	ination of TDS	and Conductivity	To Ana	alvze t	he nhy	vsical 1	properties of		
1		uced Water.	and Conductivity	To Analyze the physical properties of produced brine.						
		uceu water.		1						
2		· · · · · · · · · · · · · · · · · · ·	brine sample pH							
		ination of pH of	onne sample pri		•		/sical]	properties of		
	meter.			produce	d brine.	•	-			
3	meter. Determ	ine of water con	tent of crude oil her measurement.	produce	d brine.	•	-	properties of of produced		
	meter. Determ sample Determ	ine of water con using Karl-Fisc ination of the ca	tent of crude oil her measurement. llorific value of	produce To Anal oil. To analy	d brine. yze the	water o	content			
3	meter. Determ sample Determ	ine of water con using Karl-Fisc ination of the ca	itent of crude oil her measurement.	produce To Anal oil.	d brine. yze the	water o	content	of produced		
3	meter. Determ sample Determ gaseous	ine of water con using Karl-Fisc ination of the ca s fuel using Junk	atent of crude oil her measurement. lorific value of ter gas calorimeter.	produce To Anal oil. To analy fuel.	d brine. yze the yze the	water of heating	content value c	of produced of gaseous		
3	meter. Determ sample Determ gaseous	ine of water con using Karl-Fisc ination of the ca s fuel using Junk	tent of crude oil her measurement. llorific value of	produce To Anal oil. To analy fuel.	d brine. yze the yze the yze the	water of heating	content value c	of produced		
3	meter. Determ sample Determ gaseous Determ of the N	ine of water con using Karl-Fisc ination of the ca fuel using Junk ination of Dew I Jatural Gas.	atent of crude oil her measurement. lorific value of ter gas calorimeter.	produce To Anal oil. To analy fuel. To Anal natural g	d brine. yze the yze the yze the gas.	heating	content value c	of produced of gaseous		
3 4 5 6	meter. Determ sample Determ gaseous Determ of the M Determ given c	ine of water con using Karl-Fisc ination of the ca s fuel using Junk ination of Dew Vatural Gas. ination of Total rude oil.	atent of crude oil her measurement. dorific value of ter gas calorimeter. Point Temperature Acid Number of	produce To Anal oil. To analy fuel. To Anal natural <u>g</u> To Char EOR me	d brine. yze the yze the yze the gas. caterize	water of heating water of water of the crue ethe crue et	content value c content ide oil f	of produced of gaseous of produced For suitable		
3 4 5	meter. Determ sample Determ gaseous Determ of the N Determ given c	ine of water con using Karl-Fisc ination of the ca s fuel using Junk ination of Dew Natural Gas. ination of Total rude oil. ination of the Su	Acid Number of urface/Interfacial	produce To Anal oil. To analy fuel. To Anal natural g To Char EOR me To Char	d brine. yze the yze the gas. acterize ethod se	water of heating water of e the cru election e EOR f	content value c content ude oil f	of produced of gaseous of produced for suitable or their		
3 4 5 6	meter. Determ sample Determ gaseous Determ of the N Determ given c Determ Tension	ine of water con using Karl-Fisc ination of the ca s fuel using Junk ination of Dew I Natural Gas. ination of Total rude oil. ination of the Su n and Contact Ar	atent of crude oil her measurement. dorific value of ter gas calorimeter. Point Temperature Acid Number of	produce To Anal oil. To analy fuel. To Anal natural <u>g</u> To Char EOR me To Char wettabil	d brine. yze the yze the gas. cacterize cacterize ity, con	water of heating water of water of the cru election e EOR f ntact an	content value c content ide oil f luids fc gle, sur	of produced of gaseous of produced For suitable		
3 4 5 6 7	meter. Determ sample Determ gaseous Determ given c Determ Tension Method	ine of water con using Karl-Fisc ination of the ca fuel using Junk ination of Dew I Natural Gas. ination of Total rude oil. ination of the Su and Contact Ar I.	ttent of crude oil her measurement. dorific value of ter gas calorimeter. Point Temperature Acid Number of urface/Interfacial ngle using Imaging	produce To Anal oil. To analy fuel. To Anal natural g To Char EOR me To Char wettabil and inter	d brine. yze the yze the yze the gas. acterize acterize ity, con rfacial t	water of heating water of the the cru election e EOR f ntact an tension.	content value o content ude oil f luids fo gle, sur	of produced of gaseous of produced For suitable or their face tension		
3 4 5 6	meter. Determ sample Determ gaseous Determ of the N Determ given c Determ Tension Methoo	ine of water con using Karl-Fisc ination of the ca fuel using Junk ination of Dew I Natural Gas. ination of Total rude oil. ination of the Su and Contact Ar I.	ttent of crude oil her measurement. dorific value of ter gas calorimeter. Point Temperature Acid Number of urface/Interfacial ngle using Imaging gical behavior of	produce To Anal oil. To analy fuel. To Anal natural g To Char EOR me To Char wettabil and inter	d brine. yze the yze the yze the gas. acterize acterize ity, con rfacial t	water of heating water of the the cru election e EOR f ntact an tension.	content value o content ude oil f luids fo gle, sur	of produced of gaseous of produced for suitable or their		
3 4 5 6 7	meter. Determ sample Determ gaseous Determ of the N Determ given c Determ Tension Method To stu hydroca	ine of water con using Karl-Fisc ination of the ca s fuel using Junk ination of Dew I Vatural Gas. ination of Total rude oil. ination of the Su n and Contact An l. dy the rheolog arbon and EOR	ttent of crude oil her measurement. dorific value of ter gas calorimeter. Point Temperature Acid Number of urface/Interfacial ngle using Imaging gical behavior of	produce To Anal oil. To analy fuel. To Anal natural <u>g</u> To Char EOR me To Char wettabil and integ To analy	d brine. yze the yze the yze the gas. cacterize acterize ity, con rfacial t	water of heating water of water of the cru election e EOR f ntact an tension. nydroca	content value o content ide oil f luids fo gle, sur rbon an	of produced of gaseous of produced For suitable or their face tension		
3 4 5 6 7 8	meter. Determ sample Determ gaseous Determ given c Determ Tension Method To stu hydroca	ine of water con using Karl-Fisc ination of the ca s fuel using Junk ination of Dew I Vatural Gas. ination of Total rude oil. ination of the Su and Contact Ar l. dy the rheolog arbon and EOR i ly the pressure nd observe the	ttent of crude oil her measurement. dorific value of ter gas calorimeter. Point Temperature Acid Number of urface/Interfacial ngle using Imaging gical behavior of fluids.	produce To Anal oil. To analy fuel. To Anal natural g To Char EOR me To Char wettabil and inter To analy	d brine. yze the yze the yze the gas. acterize ity, con rfacial to yze the l late the	water of heating water of water of the the cru election e EOR f ntact an tension. nydroca	content value o content ide oil f luids fo gle, sur rbon an	of produced of gaseous of produced For suitable or their face tension d EOR fluids.		

10	Determination of the BS&W content	To quantify the sediments and water content
	present in the given crude oil sample using	in crude oil sample.
	centrifugation.	
11	To perform Polymer/surfactant flooding	To Simulate Additional Oil recovery using
	using core flooding experiment.	EOR fluids.

Reference Material:

1. Lab Manual, IIPE Visakhapatnam

Course Type	Course Code	Name of Course	L	Т	Р	Cred it		
Core	BS 48001	Industrial Training	0	0	0	2		
Course Obje	Course Objective							
 The objective of this course is to provide hands-on industrial training to students which helps them to gain practical knowledge on various industrial operations and introduce them to professional work environment. 								

Learning Outcomes

Upon successful completion of industrial training, students will:

- 1. Gain working knowledge on various industrial operations.
- 2. Have acquired hands-on practical training to perform different industrial operations.
- 3. Be introduced to latest technologies and advancements adopted in the industry.
- 4. Understand the technological challenges and constraints currently faced by the industry.
- 5. Understand the professional work culture practised in the industry.

8th SEMESTER

Course Type	Course Code	Name of Course	L	Т	Р	Credit	
Practical	PE 40004	Reservoir Simulation Lab	0	0	3	2	
Course Objective							

• The objective of this lab is to understand reservoir engineering simulation using stateof-the-art commercial reservoir simulation software and data commonly available in industry where emphasis is paid on reservoir description, reservoir model design and calibration, production forecasting and optimization, economic analysis and decision making under uncertainty.

Learning Outcomes

On successful completion of this course, the student should be able to:

- 1. Establish reservoir simulation workflow.
- 2. Create black oil model to simulate reservoir conditions.
- 3. Model oil recovery from sub-surface using compositional tools.

Unit No.	Topics to be Covered	Learning Outcome			
1.	Reservoir simulation basics.	To have basic Understanding the basic concepts of simulation and modelling.			
2.	Getting started with CMG.	Using and creating a simple mode with CMG software.			
3.	Building, running and analyzing a "black oil" reservoir simulation model by importing contour map data.	To build, run and analyze a black oil reservoir model in IMEX by importing contour map file and reservoir properties.			
4.	Perform history-matching of IMEX reservoir model.	To analyze match between simulation and production data.			
5.	Establish a water flood + chemical EOR model of coreflood using CMG-STARS.	To create a compositional reservoir model in STARS for chemical enhanced oil recovery (cEOR).			

6.	Perform history-matching of reservoir or core model.		analyze a lation and e		
		and	determin	ne	rock-fluid
		para	meters.		

Reference –

"Reservoir Simulation Lab Manual" IIPE, Visakhapatnam.

	ELECTIVES
Elective - II	 Unconventional Hydrocarbon Resources Enhanced Oil Recovery Solar Energy, Photovoltaic Energy Advanced Separation Advanced Material Design Waste to Energy Conversion
Elective - III	 Petroleum Engineering System Design Nuclear Wind and Geothermal Energy Hazardous Waste Treatment and Safety Devices Analytical Techniques Offshore and Deep sea technology
Elective - IV	 Natural Gas Engineering Advanced Reservoir Modelling Petroleum Refinery Engineering Air Pollution Tribology & Introduction to the Lubricants Energy Storage System
Elective - V	 Prospecting, Field Development and Asset Management Petrochemical Technology Nano Materials for HydrocarbonIndustry Process Modelling and Simulation Hydrogen Energy

Cour: Type		Course Code	Name of (Course	L	Т	Р	Credit
Electiv	e II	PE30010	Unconventional Resour	3	0	0	3	
Course Objective								
a: g te	 This course is designed to give the students an overview of exploration, development and production from unconventional hydrocarbon energy resources such as Shale gas/oil, CBM, Gas hydrates, Heavy oil and Tar sand. The course also highlights technological advancement in exploration, drilling, completion and production for these unconventional hydrocarbon reservoirs. 							
Learnin	g Outc	omes						
d 2. P e. 3. C	 Potential of Unconventional Hydrocarbon Energy resources to meet the rising energy demand. Production technique and technological advancement for efficient and economical extraction from these reservoirs. Challenges associated with production and development of Unconventional Hydrocarbon Energy resources. 							
Unit No.		Topics to be	Covered	I	<i>learnin</i>	g Outc	ome	
1.	CBM: propert	Introduction	, formation and		ervoir c	haracte	ristics	
	and pro system, fracturi water s	, reserve est oduction. , artificial ng of coal	imation, drilling lift, hydraulic seam, produced disposal, surface	 CBM res Drilling, methods. from CBI Hydraulie and fluid Water tre disposal f 	Comp M reser c fractu for CB catment	voir. ring. M reser and	and Pr	oduction
2.	and pro system, fracturi water s facilitie Natural formati thermo behavio	, reserve est oduction. , artificial ng of coal eparation and es, well testing Gas Hydrat on and dynamics, ki	imation, drilling lift, hydraulic seam, produced disposal, surface g. tes: Introduction,	 Drilling, methods. from CBI Hydraulie and fluid Water tree disposal fluid Thermod of hydratic 	Comp M reser c fractu for CB atment for CBM ynamic e forma ate rese	voir. ring. M reser and <u>M wells</u> and ki tion. rvoir ch	and Pr voir. inetic c	oduction onditions istics and
2.	and pro system, fracturi water s facilitie Natural formati thermo behavio method Shale C importa propert horizor	, reserve est oduction. , artificial ng of coal eparation and es, well testing Gas Hydrat on and dynamics, kit or, gas lologies. Gas/ Oil: Intro ant occurrence ies, hydration	imation, drilling lift, hydraulic seam, produced disposal, surface g. tes: Introduction, properties, netics and phase extraction duction, geology, es, petro physical	 Drilling, methods. from CBI Hydraulid and fluid Water tree disposal f Thermod of hydrat Gas hydr 	Comp M reserved for CB atment for CBM ynamic e formation ate reserved for comparison of production	voir. ring. M reser and <u>M wells</u> and ki and ki tion. rvoir ch ction.	and Pr voir. inetic c haracter	onditions istics and &

and bituminous, oil shales; origin and	Reservoir characteristics.
occurrence worldwide, resources,	
reservoir characteristics, new	
production technologies.	

- 1. Natural gas Hydrates: A guide for engineers by John Carroll.
- 2. Coal Bed Methane: From Prospects to Pipeline by P Thakur, K Aminian and S. Schatzel.
- 3. Unconventional Gas Reservoirs: Evaluation, Appraisal, and Development by MR Islam.
- 4. Class Notes.

Reference:

1. Clathrate hydrates of Natural Gases by ED Sloan and Carolyn A Koh.

Course Type	Course Code	Name of Course	L	Т	Р	Credit
Elective II	PE40003	Enhanced Oil Recovery	3	0	0	3

Course Objective

1. The objective of this course is to impart knowledge about different EOR techniques and its underlying mechanism on enhancing the oil recovery. This course also aims to provide knowledge on how to field implement and evaluate the performance of different EOR techniques.

Learning Outcomes

Upon successful completion of this course, students will:

- 1. Understand the importance of EOR, learn when to apply EOR, learn about different EOR types and its functions and learn about the different indicators/measures used to evaluate the EOR performance.
- 2. Learn about chemicals/agents used for different EOR techniques and its functions in enhancing oil recovery.
- 3. Learn about the underlying mechanisms that causes oil recovery in different EOR techniques.
- 4. Learn about the field implementation and performance evaluation of different EOR techniques.

TI	Tanias to be Coursed	Learning Outcome
Unit	Topics to be Covered	Learning Outcome
No.		
1.	Fundamentals of EOR:	
	Global and domestic necessity for EOR; India's	
	EOR policy; microscopic and macroscopic	Students will understand why
	displacement of fluids in reservoir;	EOR is required & India's effort
	mobilization of trapped oil; mobility control;	to promote EOR.
	EOR performance indicators - Capillary	
	Number, mobility ratio, breakthrough from	Students will learn on: when to
	fractional flow curves, wettability alteration	apply EOR in the field; what
	from relative permeability curves; recovery	different EOR techniques are
	factor – volumetric displacement and	applied; what different
	microscopic displacement efficiency; overview	indicators/measures are used to
	of waterflooding process; different EOR	evaluate the EOR performance;
	methods and its functions; EOR screening.	and how EOR screening is
		performed.
2.	Chemical EOR Methods – I:	
	Surfactant flooding EOR: Oil recovery	Students will learn in detail
	mechanism by surfactants, surfactant types &	about the underlying oil
	its functions; CMC; microemulsion – types &	recovery mechanisms involved

	its phase behavior; field implementation of surfactant flooding EOR; performance evaluation and screening of surfactants.	in surfactant, polymer and ASP flooding EOR techniques.
	<i>Polymer flooding EOR</i> : Oil recovery mechanism by polymers; mobility control; polymer types & its behavior under reservoir conditions; field implementation of polymer flooding EOR; performance evaluation and screening of polymers for EOR. <i>Alkaline-Surfactant-Polymer (ASP) flooding</i>	Students will have understanding on different surfactants, polymers and alkali used in respective EOR techniques and its function in enhancing the oil recovery.
	<i>EOR</i> : Role of alkaline in oil recovery; oil recovery mechanism and field implementation of ASP flooding EOR; performance evaluation of ASP EOR.	Students will also learn about how EOR techniques such as surfactant, polymer and ASP flooding EOR are implemented in the field and how its performance are evaluated.
3.	Chemical EOR Methods – II:	
	<i>Low salinity water flooding (LSWF) EOR:</i> Oil recovery mechanisms – Double layer expansion, MIE process, pH alteration, fines migration, etc.; evaluation of wettability alteration from rel. permeability curves; field implementation; challenges in LSWF EOR.	About low salinity water flooding (LSWF), microbial and hybrid EOR techniques, students will learn:
	<i>Microbial EOR (MEOR):</i> Different types of microbes and bioproducts and its role in oil recovery; MEOR types and its oil recovery mechanism; field implementation and performance evaluation of MEOR; Merits and challenges in implementing MEOR.	Underlying concepts and mechanisms that causes the enhancement in oil recovery. How those EOR techniques are implemented in field and how its recovery performance is evaluated.
	<i>Hybrid EOR techniques</i> : Oil recovery mechanism of Low salinity surfactant flooding, Low salinity polymer flooding.	Current merits and challenges of those EOR techniques, which helps them to identify solutions for those challenges in the future.

4.	Gas EOR Methods & CO ₂ Sequestration:	Students will learn about:
	Gases used for EOR; Gas EOR types; MMP; immiscible gas flooding EOR; miscible flooding EOR – first contact miscibility and multiple contact miscibility – vaporization, condensation and combined drive mechanism; ternary phase diagrams for immiscible and miscible gas flooding EOR mechanisms. Field implementation and oil recovery mechanism of: continuous gas injection, CO2 flooding, WAG, SWAG, SSWAG EOR process. Necessity for CO ₂ sequestration; CO ₂ sequestration in aquifers and oil reservoirs; CO ₂ trapping mechanisms – Structural, hydrodynamic, residual, dissolution and mineral trappings. Challenges in CO ₂ sequestration.	Different gases that are conventionally used for EOR; How gases enhance the oil recovery by miscibilization and immiscibilization process; how miscibilization of injected gas with the reservoir oil happens in first and during multiple contacts between gas and oil; how oil composition ternary phase diagram evolves during first and multiple contact miscibility. Different gas EOR methods implemented in the field and its governing mechanism on enhancing the oil recovery. CO ₂ sequestration and different geo-trapping mechanisms by which CO ₂ is sequestrated in the subsurface.
5.	Thermal EOR Methods: Types of thermal EOR and its oil recovery mechanism, advantages and constraints – Hot water flooding, steam flooding, cyclic steam flooding or huff & puff steam flooding, steam assisted gravity drainage, in-situ combustion oil recovery technique.	Students will learn about the field implementation, merits and constraints of different thermal EOR methods such as Hot water flooding, steam flooding, cyclic steam flooding or huff & puff steam flooding, steam assisted gravity drainage, in-situ combustion oil recovery technique.

- 1. Enhanced Oil Recovery. SPE (2018): Don W. Green and G. Paul Willhite.
- 2. Fundamentals of Enhanced Oil Recovery. SPE (2015): Larry W. Lake, Russell Johns, Bill Rossen, Gary Pope.
- 3. Fundamental of enhanced oil and gas recovery from conventional and unconventional reservoirs (2018): Alireza Bahadori.

Reference:

- 1. Enhanced oil recovery, I: Fundamentals and analysis: E.C. Donaldson, G.V. Chilingarian, T.F. Yen.
- 2. Enhanced oil recovery, II: Processes and operations : E.C. Donaldson, G.V. Chilingarian, T.F. Yen.

Course Type	Course Code	Name of Course	L	Т	Р	Credit		
Elective II		Solar Energy, Photovoltaic Energy	3	0	0	3		
Unit No.	Topics to be Covered					rning Outcome		
1.	Principle of op processing, this systems; Concer Power condition Maximum power three phases; E	Tature and availability of so peration of solar cells – ma n film, unconventional ma ntrators; Cells and system cha ning, energy storage, and grid er point tracking, PV to grid – Economy and Life cycle cos Water pumping: dc and ac p tion.	aterials aterials aracteris connec – single sting. S	and and stics; tion; and Solar				

- 1. Hans S. Rauschenbach, Solar Cell Array Design Handbook: The Principles and Technology of Photovoltaic Energy Conversion. Springer (2013).
- 2. C. Hu and R.M. White, Solar Cells: From Basic to Advanced Systems. McGraw Hill (1983).

Course Type		Course Code	Name of Course	L	Т	Р	Credit		
Elective-II	I	CH 40004	Advanced Separation	3	0	0	3		
Course	Obje	ective							
app	-	on, theory and	ng of various aspects of l design. Learn to develop		-	•	-		
Learning	g Out	tcomes							
1. Eva 2. Ider	 At the end of the course, the student will be able to 1. Evaluate the design parameters for multicomponent distillation process. 2. Identify and model suitable membrane process for treatment of target contaminants. 3. Understand specific applications of novel separation process. 								
Unit No.	Topi	ics to be Cove	ered		Learning Outcome				
1.	Thermodynamics: Phase equilibria, non-ideal thermodynamic property models, activity coefficient models for the liquid phase; Single equilibrium stages: Multicomponent Liquid- Liquid, Solid- Liquid, Gas-Liquid, Vapor-Liquid- Liquid systems.Modeling and design multi-component distillation system.					-			
2.	App	ticomponent proximate cedures.	multistage sepa methods, Equation	rations: tearing	-				
3.	Vap		ation; Supercritical ext pattern and rate based mo		Advanced knowledge about membrane based gas separation processes and design expertise.				
4.		nbrane separa chromatograp	tions; Adsorption, ion ex hy.	change,	Advanced knowledge about membrane based liquid separation processes and design expertise.				

- 1. J. D. Seader and E.J. Henley, Separation Process Principles, Wiley (2006).
- 2. R.W. Baker, Membrane Technology and Applications, Second Edition, Wiley (2004).

Reference Books:

1. Charles Holland, Fundamentals of Multicomponent Distillation, McGraw Hill (1997).

Course Type	Course Code	Name of Course	L	Т	Р	Credit
Elective II	PE 40009	Advanced Material Design	3	0	0	3
Unit No.	Topics to be Covered			Learning Outcome		
1.	Materials characterization using optical and neutron spectroscopies; Multiscale atomistic modeling; Use of density functional theory to predict temperature dependent thermodynamic properties of new materials e.g., complex hydrides, and kinetic processes in diffusion; Introduction to molecular simulations; Semiconductor and oxide nanostructure for optoelectronic devices, high energy solar cells; Quantum dots; Thermoelectric materials.					

- 1. Edward L. Wolf, Nanophysics and Nanotechnology. Wiley Verlag (2006).
- 2. Peter Würfel, Physics of Solar Cells: From Basic Principles to Advanced Concepts. Wiley (2009).
- 3. Charles Kittel, Introduction to Solid State Physics. Wiley (2012).
- 4. D. C. Rapaport, The Art of Molecular Dynamics Simulation. Cambridge University Press (1995).

Course Type	Course Code	Name of Course	L	Т	Р	Credit	
Elective: II	-	Waste to Energy Conversion	3	0	0	3	
Pre-Requis	ites:				1		
Basic of he	at, thermodynamic	s, and chemical reaction engir	neering; B	iochemi	ical pro	cesses.	
Objectives	:						
tech ferm 2. It als	 The course provides a thorough understanding of waste to energy resources, technologies and systems to convert the waste into energy (e.g., anaerobic digestion, fermentation, pyrolysis, gasification, incineration, etc.). It also provides a basic understanding of the principles underlying the modern design and operation of systems based on recent research. 						
Learning (Outcomes						
incir 2. Fam treat 3. Acq	 into energy (e.g., anaerobic digestion, fermentation, pyrolysis, gasification, incineration, etc.) 2. Familiar with the current research scenario associated with biochemical and thermal treatment of wastes & biomass. 3. Acquired skills will be useful in the preparation, planning, and implementation of energy projects. 						
Unit No.	Topics	to be Covered	Learning Outcome				
C fu	el- agro-based,	energy from waste: d classification of waste as forest residues, industrial id waste, & E-waste.	Understa balance, various characte	and a	ource	energy ted with and tes	
as	Global and Indian scenario: Environmental aspects, Waste Management; 3R Principle of Reduce, Reuse and Recycle.Familiar with the Global and Indian scenario and 3R principle.						
T A T G B aı	hermochemical rou naerobic Dig hermochemical asification, and In iodiesel synthesis, nd Hazardous waste		fundame	ental as	spects	ions and involved of waste	
	-	erived from waste to energy er gas, Biogas, Ethanol, and	Understa fuels der			erties of te.	

	Briquettes, Comparison of properties with conventional fuels.	
5.	Energy production from waste plastics and E- waste, Cultivation of algal biomass from wastewater and its application in energy production. Calculations: heat & mass balances.	Familiar with the Energy production from plastics wastes & algal biomass with Heat & Mass balance.
6.	Landfills: Gas generation and collection in landfills, Introduction to transfer stations, Case studies related to waste to energy conversion.	Learn the collection and transportation of fuel and case studies.

Books:

- 1. D.O. Hall and R.P. Overeed, Biomass-Renewable Energy, John Willy and Sons, New York. 1987.
- 2. M.M. EL-Halwagi, Biogas Technology, transfer and diffusion, Elsevier Applied science Publisher, New York, 1984.

References:

- 1. M. J. Rogoff and F. Screve, Waste-to-energy: technologies and project implementation. Academic Press., 2019.
- 2. N. B. Klinghoffer and M. J. Castaldi, Waste to energy conversion technology. Elsevier., 2013.
- 3. J.H. Harker, and J.R. Backhusrt, Fuel and Energy, Academic Press Inc.

Course Type	Course Code	Name of Course	L	Т	Р	Credit
Elective III	PE 40010	Petroleum Engineering System Design	3	0	0	3
Unit No.	Topics to be Covered				Learn	ing Outcome
1.	rig, Loadi Casing an Crude oil Heater tre Design Intermitte Design of	tion and design: Drilling rig ng and stability of rig. d Drill string design. treatment: Heater treater, E eater, Design of Heater treate Gas lift system: Conti ent system. SRP, ESP and PCP system. Pump and Compressor, Coil	Electros er. nuous	static and		

Course Type	Course Code	Name of Course	L	Т	Р	Credit
Elective III	PE40011	Nuclear Wind and Geothermal Energy	3	0	0	3

Course Objective

- 1. The course aims to give students a basic understanding of nuclear energy concepts such as nuclear fission, fusion, nuclear reactors, nuclear fuel, and their management.
- 2. To facilitate the students to achieve a clear conceptual understanding of technical and commercial aspects of wind energy generation.
- 3. To be familiar with fundamental concepts of geothermal energy generation.

Learning Outcomes

- 1. At the end of the course, students will learn and understand fundamental concepts of nuclear energy generation which include nuclear fission, fusion, nuclear reactors, nuclear fuel, and their management.
- 2. On completion of this course, the students will be able to exhibit conceptual knowledge of the technology, economics, and viability of wind energy generation.
- 3. Students will get to know about basic concepts of geothermal energy.

UnitNo.	Topics to be Covered	LearningOutcome					
	Nuclear Energy: Basic nuclear models, radioactivity, nuclear reactions – energy systems based on fission & fusion reactions.	The course aims to give students a basic understanding of nuclear					
1	Reactor heat generations and removal; Nuclear Fuel cycle from Uranium / Thorium supply, enrichment.	energy concepts such as nuclear fission, fusion, nuclear reactors, nuclear					
	Fuel management and waste disposal.	fuel, and their management.					
	Interaction of ionizing radiation with matter, radiation detection, shielding, and effects on human health.						
2	Wind Energy: Introduction to wind resources: wind speed and terrain properties, power density; Measurement of wind speed and turbulence.	On completion of this course, the students will be able to exhibit conceptual					
	Wind turbine / rotor design: Thrust, torque, speed, and power; Turbine material design and structural analysis.	knowledge of the technology, economics, and viability of wind					

	Integration of variable power production into electrical systems: Control of rotor speed, maximum power in low wind speeds, constant power in high wind speeds.	energy generation.
	Offshore wind farm:Dynamic wind and wave loadings, grid integration, operational and maintenance strategies.	
	Cost of energyfrom wind turbine during lifetime.	
	Nature, occurrence, types and classification of geothermal fields;	
3	Resource Exploration and Characterization.	Students will get to know about basic concepts of
	Geothermal Energy Recovery.	geothermal energy.
	Analysis of energy system proposals with reference to engineering, economic, socio-political, and environmental objectives.	

References

- 1. Murray, R. and Holbert, K.E., 2014. Nuclear energy: an introduction to the concepts, systems, and applications of nuclear processes. Elsevier.
- 2. Manwell, J.F., McGowan, J.G. and Rogers, A.L., 2010. Wind energy explained: theory, design and application. John Wiley & Sons.
- 3. Grant, M.A. and Bixley, P.F. Geothermal Reservoir Engineering. Second Edition. Elsevier. 2011.
- 4. Glassley, W.E. Geothermal Energy. Second Edition. CRC Press. 20.

Course Type	Course Code	Name of Course	L	Τ	Р	Credit	
Elective III	CH 40011	Hazardous Waste Treatment and Safety Devices	3	0	0	3	
Unit No.		Topics to be Covered		Lear	ning	Outcome	
1.	sources, g	• Fundamental knowledge of hazardous waste, their sources, generation, identification, classification and characterization.					
	• Health and safety related problems of hazardous waste, routes of migration.						
	• Minimiza	tion Technologies of hazardous wa	aste.				
	• Hazardou	s waste treatment and its disposal.					
	• Regulatory aspects of hazardous wastes: regulation on storage handling and transportation of hazardous waste.						
	• Clean-up of hazardous waste contaminated sites.						
	 Risk assessment and hazardous waste management. 						
	• Management of hazardous waste case studies: pesticides and containers.						
	• Managem	ent of hazardous nuclear waste.					

- 1. Michael D. Lagrega, Phillip L. Buckingham, Jeffrey C. Evans, Hazardous Waste Management.
- 2. Waveland Pr Inc. (2010).
- 3. S. Bhatia, Solid and Hazardous Waste Management. Atlantic (2007).
- 4. Mackenzie Davis, David Cornwell, Introduction to Environmental Engineering. McGraw Hill Indian Edition (2017)

Course Type	Course Code	Name of Course	L	Т	Р	Credit
Elective- III	CH 40006	Analytical Techniques	3			3

Course Objective

The objective of the course is to provide technical prospectus and overview of different analytical techniques for spectroscopic, spectrometric, microscopic, thermal and chromatographic characterization of materials.

Learning Outcomes

By the end of the course, the students will be able to,

- 1. Understand the basics and application of different analytical techniques and instrumentation used in different analytical laboratories for material characterization.
- 2. Categorically interpret the fundamental properties of the material using spectroscopic, spectrometric,microscopic, thermal and chromatographic characterization instruments.

Unit No.	Topics to be Covered	Learning Outcome
1.	Spectroscopy: Introduction, Spectroscopy methods: Infrared, UV-Visible, Fluorescence, Nuclear Magnetic Resonance, Atomic Absorption.	LearnFundamentals,WorkingandInstrumentationofSpectroscopy.
2.	Spectrometry: Mass, Matrix-assisted laser desorption/ionization (MALDI).	LearnFundamentals,WorkingandInstrumentationofSpectrometry.
3.	Microscopy: Introduction, Atomic Force Microscopy, Field Emission Scanning Electron Microscope with EDXS (Energy-dispersive X- ray spectroscopy), Transmission Electron Microscopy, Laser Scanning Confocal Microscopy, Confocal Raman.	Learn Fundamentals, Working and Instrumentation of Microscopy.

4.	Thermal analysis: Differential Scanning Calorimetry, Thermal Gravimetric Analysis.	Learn Fundamentals, Working and Instrumentation of Thermal Analysis techniques.
5.	Chromatography: Introduction, Thin-Layer Chromatography, Types of Column Chromatography: Affinity and Ion Exchange, Gel Permeation and HPLC, Gas Chromatography– Mass Spectrometry.	Learn Fundamentals, Working and Instrumentation of Chromatography.

- 1. Keith Wilson and John Walker, Principles and Techniques of Biochemistry and Molecular Biology, Cambridge University Press; 8th Edition, Cambridge University Press, (2018).
- D. A. Skoog and D. M. West, Fundamentals of analytical chemistry, Cengage Publishers; 9th Edition. Cengage Publishers, (2014)R. M. Silverstein, F. X. Webster, D. J. Kiemle and D. L. Bryce, Spectrometric Identification of Organic Compounds, Wiley Publishers; 8th Edition, Wiley, (2014).
- 3. D. B. Williams and C. B. Carter, Transmission electron microscopy-a text book for material science, Springer Publishers; 2nd Edition ,Springer, (2009).

Reference:

- 1. G. D. Christian, P. K. Dasgupta and K. A. Schug, Analytical Chemistry, Wiley Publishers; 7th Edition, Wiley, (2013)
- 2. Introduction to Polymer Science. Charles E. Carreher. Jr., 4th Edition, CRC Press, (2017).

Course Type	Course Code	Name of Course	L	Т	Р	Credit
Elective III		Offshore and Deep Sea Technology	3	0	0	3

Course Objective

1. The objective of the course is to introduce the students to the challenging area of petroleum industry and make them understand different offshore platforms used for drilling and production; their stability criteria and station keeping methods. The aim of this course is also to provide a clear understanding of the difference between offshore and onshore operations w.r.t. drilling, completion and production operations with the help of case studies.

Learning Outcomes

On successful completion of the course, the student shall be able to:

- 1. Explain the offshore sea environment and stability of offshore structures,
- 2. Explain applications and limitations of the various fixed and floating offshore drilling/production structures,
- 3. Explain offshore drilling, challenges and technologies,
- 4. Explain offshore production processing, transportation and storage and deep sea technologies,
- 5. Explain well abandonment methods and environmental concerns and emerging technologies,
- 6. Solve practical case studies.

Unit No.	Topics to be Covered	Learning Outcome		
1	Introduction: Offshore oil and gas operations and ocean environment. Sea floor marine soils, Geotechnical aspects. Various forces acting on offshore structure; Stability of offshore structure.	Explain the offshore sea environment and stability of offshore structures.		
2	Offshore Platforms: Offshore fixed platforms, mobile units, Station keeping methods like mooring & dynamic positioning system.	Explain applications and limitations of the various fixed and floating offshore drilling/production structures.		
3	Offshore Drilling and Well Completion: Difference in drilling from land, from fixed platform, Jackup, ships and semi submersibles. Use of conductors and risers. Deep sea drilling. Well completion. Deep water applications of subsea technology: drilling rig, well construction issues,	Explain offshore drilling, challenges and technologies.		

	cementations, casing and mud design, mud window for vertical / horizontal drilling, gas hydrates.	
4	Offshore Production and sub-sea technologiesOffshore production: Oil processing platforms, waterinjection platforms, storage, SPM and SBMtransportationandutilities.Deep water production system: Subsea transducers /sensors, control module, Wellheads and manifoldsphase separators.	Explain offshore production processing, transportation and storage and deep sea technologies
5	Well abandonment, environmental concerns, Emerging deep water technologies, equipment and systems, remote operation vessels, safety of divers.	
6	Case studies Selection of offshore platform, mooring system, production facilities based on given conditions.	Solve practical case studies.

- 1. S. Laik "Offshore Petroleum Drilling and Production" CRC Press, Taylor and Francis.
- 2. Yong Bai, Qiang Bai, Subsea Engineering Handbook. Gulf Professional Publishing (2012).
- 3. James Speight, Handbook of Offshore Oil and Gas Operations. Gulf Professional Publishing (2014).
- 4. Yong Bai, Qiang Bai, Subsea Pipelines and Risers. Elsevier Science (2005).
- 5. Andrew Clennel Palmer, Roger A. King, Subsea Pipeline Engineering. PennWell Books (2008).
- **6.** Subrata Chakrabarti, Handbook of Offshore Engineering, Volume I and II. Elsevier Science (2005).

Course Type	Course Code	Name of Course	L	Т	Р	Credit
Elective - IV	PE 40003	Natural Gas Engineering	3	0	0	3

Course Objective

The objective of the course is to provide the basic knowledge of natural gas production, natural gas processing and gas transportation. This course also covers both upstream and refining process related to natural gas and along with highlighting the current status of production of natural gas through unconventional sources/technics and the utilization of natural gas in various forms and their value chains.

Learning Outcomes

Upon successful completion of this course, students should be able to:

- (a) Explain Natural Gas Significance in Global energy scenario, its composition and utilization.
- (b) Explain the Phase behavior of Natural gas and Calculate Natural Gas Properties based on its composition.
- (c) Explain the subsurface well completion methods and wellbore performance.
- (d) Design surface compression, dehydration, sweeting units required for natural gas processing.
- (e) Explain transportation, storage and metering process of natural gas and conversion of natural gas to CNG and LPG.
- (f) Explain LNG and CNG value chains.

Unit No.	Topics to be Covered	Learning Outcome
1	Introduction: Composition of Natural Gas, Utilization of Natural Gas, Natural Gas Industry, Natural Gas Reserves, Types of Natural Gas Resources, Future of the Natural Gas Industry.	Significance in Global energy
2	Properties of Natural Gas: Phase Behaviour, properties of Natural Gas, Formation Volume Factor, etc., Determination of natural gas properties such as specific gravity, pseudocritical properties, viscosity, compressibility factor, gas density, formation and expansion volume, and compressibility.	Natural gas and Calculate Natural Gas Properties based on
3	Production of Natural Gas: Overview of well Completion and wellbore Performance.	Explain the subsurface well completion methods and wellbore performance.

4	Gas Gathering system, transportation and Storage: Gas Gathering system, Transmission of Natural gas, Transportation and Measurement, Pipeline Design. Flow through pipeline, issues and solutions. Underground storage. Natural Gas Metering.	and metering process of natural gas and conversion of natural
5	Natural Gas Processing & surface facilities: Gas Compressor, Compressor design, Gas Flow Measurement, Principle of Separator, Design of Separator. Dehydration of Natural Gas, Design of Dehydration, Sweeting processes and sulphur recovery, Processing of LPG, CNG system, Conversion of gas to liquid.	dehydration, sweeting units required for natural gas
6	 Gas Supply/Distribution: City Gas/CNG development, CNG stations, Design aspects for City Gas Network and CNG Stations, Maintenance and safety of City Gas Networks and CNG equipment. LNG: Import of LNG, LNG liquefaction plant and shipping, LNG regasification, LNG Plant. 	-

- (a) B. Guo and A. Ghalambor, Natural Gas Engineering Handbook, Gulf Publishing Company, 2005.
- (b) T. Ahmed and P. D. McKinney, Advanced Reservoir Engineering, Elseveir, 2005.
- (c) D.L. Katz and R.L. Lee, Natural Gas Engineering, M

Course Type	Course Code	Name of Course	L	Т	Р	Credit
Elective IV	PE 40012	Advanced Reservoir Modelling	3	0	0	3
Unit No.	Topics to be Covered				earniı	ng Outcome
1.	Geostatistical modeling, quantification of connectivity, lithofacies, porosity, permeability using variogram, krigging techniques; Construction of heterogeneous reservoir models, constrained to well and seismic data; Upscaling and ranking; Stochastic simulation and modeling; Overview of uncertainty analysis and integrated studies; Case studies.					

- 1. M.J. Pyrez and C.V. Deutsch, Geostatistical Reservoir Modeling. Oxford University Press.
- 2. J. Caers, Modeling Uncertainty in Earth Sciences. Wiley Blackwell.
- 3. Matlab Reservoir Simulation Toolbox. SINTEF.
- 4. S. Cannon, Reservoir Modeling: A Practical Guide. Wiley

Course Type	Course Code	Name of Course	L	Т	Р	Credit	
Elective- IV	PE 40003	Petroleum Refinery Engineering	3	0	0	3	
Course O	bjective			ł	<u> </u>		
		is to provide technical p in petroleum refineries to	-		verview	of different	
Learning	Outcomes						
 Cha asso ope Obt refin 	 At the end of the course, the student will be able to 1. Characterize the crude based on the assay data and interpret different parameters associated with the crude characterization and petroleum products to different unit operations in the refinery. 2. Obtain technical information and overview of various unit operations in petroleum refinery with respective feed, products and process parameters of each unit operation in the refinery. 						
Unit No.	Торіс	es to be Covered		Lear	ning Ou	tcome	
1.	Origin of petroleum crude oil. Evaluation of crude oil – evaluation and characterization of crude oil: TBP and other distillation tests. Petroleum products, their properties, specification and testing – different properties like flash point, fire point, smoke point, aniline point, carbon residue, kinematic viscosity, pour point, freezing point etc. Use of crude book data.					nd different	
2.	crude. Process	atmospheric distillation design for atmosphe lization of naphtha. Vacuu	of pr ric	processes of crude refining.			
3.	Alkalization, Oth Vis-breaking, extraction, Sol	aphtha. Isomerization a er secondary processes li Furfural/Phenol/NM vent dewaxing, propa layed coking process. FO	ike Na AP ine	Naphtha reforming.			

4.	Hydrotreatment processes in refining: Hydro- Desulfurisation, Hydrofinishing, Hydrocraking, and Production of lube oil base stock. Residual Hydrocracking.	Understanding Hydrotreatment processes in Refining.
5	Refinery equipment: furnaces, distillation columns, reactors, pumps, compressors and piping.	Understanding refinery Equipment Design and Environmental Impact.
6	Elements of design of stream reformer naphtha cracker, catalytic reformer etc.	
7	Environmental impact of refineries.	

- 1. Petroleum Refinery Engineering by W. L. Nelson, 4th Edition, McGraw-Hill, (1958).
- 2. Petroleum Refining, Technology & Economics by J. H. Gray & G. E. Handwerk,5th Edition, CRC Press, (2007).
- 3. Petroleum Refinery Distillation by R. N. Watkins,2nd Edition, Gulf publishing company,(1979).
- 4. Modern Petroleum Refining Processes by B. K. B. Rao, 6th Edition, CBS Publishers, (2014).
- 5. Fundamentals of Petroleum and PetroChemical Engineering by Uttam Ray Chaudhuri, CRC Press,1st Edition,(2011).

Reference:

1. The Chemistry & Technology of Petroleum by J. G. Speight, CRC Press, 5th Edition, 2014.

Course	Туре	Course Code	Name of Course	L T P		Credit	
Electiv	e-IV	CH 30009	Air Pollution Control	3	0	0	3
Course	Objecti	ve					
-			technical background of air pollueling, and air pollution control te			ring tec	hniques,
Learnii	ng Outo	comes					
environ Evaluat	Identify the major sources of air pollution and understand their adverse effects on health and environment. Evaluate the dispersion of air pollutants in the atmosphere and to develop air quality models. Choose and design control techniques for particulate and gaseous emissions.						
Unit No.		Торіс	es to be Covered	L	earning	g Outco	ome
1.	air po air po Curre	llution; Histo ollution; Effe	oduction to principal aspects of ry of air pollution; Sources of ects of major air pollutants; standards and objectives; Air n.	f air pollution and understand ; their adverse effects.			
2.	Meteo disper chemi disper	rsion of a istry, Aeroso	applied to air pollution and ir pollutants; Atmospheric of behaviour; Transport and ng. Commercial air quality	air poll	utants i here an	n the d to dev	rsion of velop air
3.	of em Engin Mode transp contro pollut Contr partic	nissions and leering cont ling and con- port and from ol equipments ant removal ol devices a ulate matter	ontrol techniques: Monitoring air pollutants in ambient air; rol of stationary sources; ntrol of emission from road industrial sources. Selection of ; Process change, fuel change; and disposal of pollutants; nd systems, removal of dry , liquid droplets and mist ollutants and odor removal.	sampling techniques and design aspects of air pollution control techniques.			
4.		-	: Indoor air pollution; to air pollution.		and the	air pollu eir contr	

5.	Economics in air pollution control: Economics	Economic aspects associated
	and trends in air pollution control.	with air pollution.

- 1. H.S. Peavy, D. R. Rowe, G. Tchobanoglous, Environmental Engineering, Mcgraw-Hill (1985).
- 2. M.N. Rao, H.V.N. Rao, Air Pollution. McGraw Hill, Indian Edition (2017).

- 1. Richard C. Flagan, John H. Seinfeld, Fundamentals of Air Pollution Engineering. Prentice Hall (1988).
- 2. Noel de Nevers, Air Pollution Control Engineering, Waveland Press, Inc (2010).

Course Type	Course Code	Name of Course	L	Т	Р	Credit
Elective IV	-	Tribology & Introduction to the Lubricants	3	0	0	3
Unit No.		Topics to be Covered				rning come
1.	 The fundamentals of lubricants business: Lubricant value chain. Types of Lubricants- Automotive, Industrial, Marine, Railroad, Air. Applications of lubricants – Automotive (Trucks, Cars, 2-Wheelers, Tractors, Gear Oils, Natural Gas. Engine Oils etc.) and Industrial (Cutting Oils, Rust Preventives, Rolling Oils, Compressor Oils, Hydraulic, Drilling Oils etc.) Properties of Lubricants. Bio-Lubricants. 					
2.	 Fundamentals of Base Oils. Type of Crude Oils. Refinery process – Brief introduction. Base Oil Groups. Properties of Base Oils. 					
3.	 Fundamentals of Additives Properties & key characteristics. Composition of additives for various applications. Additive Chemistry. Types of additives. Performance contribution of additive to Lubricants. 					
4.	 Lubricants – Automotive Understanding of Key specifications like API, JASO, ACEA. Global Specifications and Viscometrics. India- Current scenarios of Lubricants in India & Future trends. 					

5.	Lubricants-Industrial, Marine, Railroad, Air sector Indian Lubricant Market- • Current size & key players. • Growth Potential.	
6.	 New trends impacting lubricants, base Oils and additive industry BS IV to BS VI Transition by 2020. Transition towards high-quality lighter lubricants. New slate of Base Oils over next 10 years. 	
7.	 Finance and Cost optimization of Lubricants Tools and techniques: value engineering and collaborative optimization. Global best practices to drive down the total costs of ownership. 	

Course Type	Course Code	Name of Course	L	Т	Р	Credit
Elective IV		Energy Storage Systems	4	0	0	4

Course Objective

1. This course covers the necessary technical knowledge of the fundamental principles and application areas of proven technologies for energy storage solutions. And to study details of various energy storage systems along with applications and enable to identify the optimal solutions to a particular energy storage application.

Learning Outcomes

1. After successful completion of the course, students will be able to: Students can identify available technologies for energy storage and their typical application areas with their advantages and development challenges and summarize the demand for further development, potential improvements, and possibilities for innovative solutions in the energy storage subject field.

Unit No.	Topics to be Covered	Learning Outcome
1.	Scientific and engineering fundamentals of all significant energy storage methods, different types of energy storage systems (ESS), and their working principals;	Students can discuss energy storage systems and provide an understanding and appreciation of the scientific principles.
2.	Storage of energy as hydroelectric pumped storage, thermal, compressed air storage, flywheel storage, mechanical, electrostatic, and magnetic systems, phase transitions and reversible chemical reactions, organic fuels and hydrogen, and electrochemical systems;	Student will be able to relate with various upcoming energy storage technology.
3.	Energy storage technologies; basics of batteries; materials and methods; electrochemical ESS types.	They learned about the various parts of the battery and their functions.
4.	Safety issues; model codes and standards; traditional and emerging battery systems, EV and automotive technologies.	Understand how cells are used for everyday purposes: road, water, and air transport vehicles, portable and stationary use.

Text Book:

1. Fundamentals of Energy Storage by J. Jensen and B. Sorenson, Wiley-Interscience, New York.

- 2. Fundamentals and Application of Lithium-ion Battery Management in Electric Drive Vehicles by San Ping Jiang, Wiley.
- 3. Modern electric, hybrid electric, and fuel cell vehicles fundamentals, theory, and design by Mehrdad Ehsani, Yimin Gao, Sebastien E. Gay, Ali Emadi, CRC press.

- 1. Energy Storage: Fundamentals, Materials, and Applications, by Robert Huggins, Springer Nature; 2nd ed.
- 2. Grid-Scale Energy Storage Systems and Applications, Fu-Bao Wu, Bo Yang, Ji-Lei Ye, Elsevier; 1st ed.

Course Type	Course Code	Name of Course	L	Т	Р	Credit
Elective V	PE40007	Prospecting, Field Development and Asset Management	3	0	0	3

Course Objective

The objective of this course is to impart knowledge on various operations that are performed in the field to develop, manage and improve the value of a hydrocarbon asset. This course also aims to introduce basic knowledge on petroleum economics and helps students to make decisions based on technical and economic feasibility.

Learning Outcomes

Upon successful completion of this course, the students will:

- Have a detail understanding on different activities performed in a field from exploration to abandonment phase.
- Have broad knowledge on petroleum economics and learn to make economic decisions.
- Have gained knowledge on developing, managing and improving the asset value by different reservoir management practices.

Unit	Tonics to be Covered	Loorning Outcome		
	Topics to be Covered	Learning Outcome		
No.				
1.	Life cycle of a hydrocarbon field; Field	Students will understand about		
	development workflow; Production	various activities that are performed		
	scheduling; Probabilistic reserve	during different phases (i.e.,		
	estimation.	exploration, appraisal, development,		
		production & abandonment) in life		
		cycle of a hydrocarbon field.		
		Familiarization on probabilistic		
		reserve estimation by Monte-Carlo		
		simulation.		
2.	Project economic evaluation: Capital	Students will learn in detail about the		
	expenditures and Operating expenditures;	capital and operating expenditures		
	cash flow statement; balance sheet; Net	that incurs during different phases of		
	Present Value (NPV).	a hydrocarbon field.		
		Students will learn to: prepare a cash		
		flow statement and balance sheet; and		
		calculate NPV.		
		Students will learn on how to select a		
		economically feasible project among		
		multiple options based on NPV.		

3.	Production profile of each field architecture;	Students will learn about how
5.	Offshore field architectures and production	production profile varies for different
	systems, Seabed boosting, Field processing	field architectures and how
	facilities and product control; Flow	
	•	production profile for a field can be
	assurance; Flow design of well; Reservoir	improved by technology intervention.
	depletion and field performance.	
		Students will learn about how
		production systems, processing
		facilities and subsea systems are
		operated and managed in offshore
		fields.
		Students will learn about: flow
		assurance (i.e., it's importance,
		different flow assurance problems
		encountered during production and
		ways to mitigate the flow assurance);
		and factors and procedure to be
		adopted to design a well.
		Students will learn about: why and
		how reservoir depletion occurs
		recovery; how to evaluate the
		production performance of a field
		during depletion phase.
4.	EOR screening; Production optimization	Students will learn about:
	and integrated asset modeling; Data	
	processing and management; Reservoir	How to select a suitable EOR for a
	management case studies.	field by manual and computational
		methods.
		How hydrocarbon production is
		optimized and how integrated asset
		modeling is performed; Different data
		available and how it can be effectively
		used for improving the asset value.
		Ways to manage and improve the
		asset value by analyzing different
		cases/fields across the world.
		cases/neius across the world.

- 1. Oil and Gas Exploration and Production: Reserves, Costs, Contracts. Technip 2011: Nadine Bret-Rouzaut, Jean-Pierre Favennec.
- 2. Real Time Reservoir Management. SPE (2012): K. Shah, O. Izgec,
- 3. Integrated Reservoir Asset Management: Principles and Best Practices: J. Fanchi,

- 1. Integrated Petroleum Reservoir Management: A Team Approach: Abdus Satter, Ganesh Thakur.
- 2. Advanced Reservoir Management and Engineering: T. Ahmed, D. Nathan Meehan.

Course Type	Course Code	Name of Course	L	Т	Р	Credit		
Elective V	BS 40004	Petrochemical Technology	3	0	0	3		
Unit No.	Topics to be Covered				Learning Outcome			
1.	 Survey of p different fea separation of Chemicals utilization Production Naphtha crassing 							
	• Chemicals compounds utilization;							
	 Catalytic rearomatics; fibres, deten coke; 	hetic						
	• Integration Petrochemic	of Petroleum Refining cals	and					

- 1. Hydrocarbon Chemistry by G. A. Olah and A. Molna.
- 2. A. Text on Petrochemicals by B. K. B. Rao.
- 3. Petroleum Refining, Technology and Economics by J. H. Gary and G. E. Handwerk.

Reference Books:

- 1. Industrial Organic Chemicals by H. A. Wittcoff and B. G. Reuben.
- 2. Handbook of Petrochemicals and processes by G. M. Wells.

Cour Typ		Course Code	Name of Course	L		Т	Р	Credit	
Electiv	ve V	CH 40008	Nano Materials for Hydrocarbon Industry	3 0 0 3			3		
Course	Course Objective								
		rse aims to train s ion in hydrocarbo	tudents to understand the conce n Industry.	pt Nan	om	nateria	al scie	nce and their	
Learn	ing O	Outcomes							
Cha • Stu	Characterization and Properties.							-	
Unit No.	Тор	ics to be Covered	1	Learning Outcome					
1.	nan	oduction to metal oparticles, carb oparticles, nanopo	, e	Students will be acquainted with the nanomaterials world.					
2.	Syn CV		electrochemical, thin films – gmuir-Blodgett, mechanical	Students will know the design and synthesis routes for nanomaterial production.					
3.		ctionalization: nolecule conjuga	Ligand incorporation, tion, polymer coating.	Students will be acquainted with various functionalization techniques.					
4.	Nan scar mic	nomaterial charact	cal properties at nanoscale; cerization: SEM, TEM, AFM, roscopy, scanning tunneling on and scattering techniques, opy.	Students will be acquainted with various characterization techniques.					
5	char stim and	racterization, dril		Students will be well aware about the application of nanomaterials in Hydrocarbon Industry.					

- 1. Dieter Vollath, Nanomaterials: An Introduction to Synthesis, Properties and Applications. Wiley VCH (2013).
- 2. Ratna Tantra, Nanomaterial Characterization: An Introduction. Wiley (2016).

- 1. Dieter Vollath, Nanoparticles Nanocomposites Nanomaterials: An Introduction for Beginners. Wiley VCH (2013).
- 2. Daniel L. Fedlheim and Colby A. Foss, Metal Nanoparticles: Synthesis, Characterization, and Applications. CRC Press (2001).

Course Type	Course Code	Name of Course	L	Τ	Р	Credits
Elective V	PE 40013	Process Modelling and Simulation	3	0	0	3

Course Objective

This course is intended to learn development of mathematical models using first principles and data for different chemical engineering and allied processes and also to apply numerical methods for solving the developed mathematical models. Further, different simulation tools will be demonstrated.

Learning Outcomes

At the end of the course, the student will be able to:

- 1. Apply conservation laws for different chemical engineering and allied processes.
- 2. Analyze ill-conditionality, stiffness and nature of steady states.
- 3. Develop empirical and grey-box models.
- 4. Solve ODEs, PDEs, DAEs.
- 5. Use different software tools for simulation.

Unit	Topics to be Covered Learning Outcomes				
No.	Topics to be covered	Learning Outcomes			
1.	Introduction to modeling, a systematic approach to model building, classification of models. Conservation principles, thermodynamic principles of process systems.	Apply conservation laws for different chemical engineering and allied processes.			
2.	Development of steady state and dynamic lumped and distributed parameter models based on first principles. Analysis of ill-conditioned systems.	Apply conservation laws for different chemical engineering and allied processes, Analyze ill-conditionality, stiffness and nature of steady states.			
3.	Development of grey box models. Empirical model building. Regression. Statistical model calibration and validation. Population balance models. Examples.	Develop empirical and grey- box models.			
4.	Solution strategies for lumped parameter models. Stiff differential equations. Solution methods for initial value and boundary value problems. Euler's method. R-K method, shooting method, finite difference methods. Solving the problems using MATLAB/SCILAB.	Solve ODEs, DAEs, Use different software tools for simulation.			
5	Solution strategies for distributed parameter models. Solving parabolic, elliptic and hyperbolic	Solve PDEs, Use different software tools for simulation.			

partial differential equations. Finite element and
finite volume methods.

- 1. Chemical Process Modelling and Computer Simulation, Amiya K. Jana, Prentice Hall, 2011, 2nd Edition.
- 2. Process Modelling and Simulation in Chemical, Biochemical and Environmental Engineering, Ashok Kumar Verma, CRC Press, 2014.
- 3. Process Modelling, Simulation and control for Chemical Engineers, William L. Luyben, McGraw-Hill Publishing Company, 1996, 2nd Edition.

- 1. Process Modelling and Model Analysis, K. M. Hangos and I. T. Cameron, Academic Press, 2001.
- 2. Mathematical Modelling and Simulation in Chemical Engineering, M. Chidambaram, Cambridge University Press, 2018.

Course Type	Course Code	Name of Course		L	Т	Р	Credit		
Elective V	7	Hydrogen Energy	3 0 0						
Course Ob	Course Objective								
This course has essential theoretical knowledge to recognize the methods of hydrogen production, purification, storage, and utilization. And to study details of various hydrogen production processes and storage systems along with applications and enable to identify the optimal solutions to a particular hydrogen storage application.									
Learning Outcomes									
On successful completion of this course, students: Have a basic knowledge of Hydrogen Energy, Properties of Hydrogen, Production methods and purification, Storage methods, Safety, Environmental benefits, and Applications in the Hydrogen Economy.									
Unit No.	Торі	cs to be Covered	Learning Outcome						
1.		nydrogen energy systems, s of production, storage, and	To provide comprehensive and logical knowledge of hydrogen production, storage, and utilization.						
2.	reformation, gas oxidative and no green hydrogen	ction processes, steam ification, pyrolysis, on-oxidative processes, production using nuclear wables- wind, biomass,	To know about the chemical and physical foundations of hydrogen fuel production.						
3.	compressed stor solid-state stora	ourification; storage, age, liquid-state storage, ge, different materials for a, Metal hydride storage, e storage;	To design and develop a suitable hydrogen storage system to be used along with different types of the cell system.						
4.	Hydrogen sensin hydrogen safety	ng, hydrogen utilization,	To minimize environmental hazards associated with the use of hydrogen storage technology.						

- 1. Michael Hirscher, Hand Book of Hydrogen Storage, McGraw-Hill Professional.
- 2. J O'M Bockris, Energy options: Real Economics and the Solar Hydrogen System, Halsted Press and London publisher, 1980.
- 3. M.K.G. Babu, K.A. Subramanian, Alternative Transportation Fuels: Utilization in Combustion Engines, CRC Press, 2013.

- 1. M. Ball and M. Wietschel, The Hydrogen Economy Opportunities and Challenges, Cambridge University Press, 2009.
- 2. S.A Sherif, D. Yogi Goswami, E.K. Lee Stefanakos, Aldo Steinfeld, Hand Book of Hydrogen Energy CRC Press 2014